INSTITUTO DE FORMACIÓN Y CAPACITACIÓN PROFESIONAL NEMA

DE EXCELENCIA

Otorgado a:

Elio Gustavo Armas Torres

Por haber aprobado el Curso de Especialización Profesional:

"MODELADO, ANÁLISIS Y SIMULACIÓN EN SISTEMAS ELÉCTRICOS DE POTENCIA EN

DIGSILENT POWERFACTORY 2023"

Organizado por el Instituto Nema S.A.C y el auspicio del Colegio de Ingenieros del Perú Consejo Departamental de Apurimac, con una totalidad de 120 horas académicas, entre clases teóricas - prácticas. Realizado del 06 de Junio al 01 de Agosto del 2024.

Habiendo culminado satisfactoriamente el curso se expide el presente certificado en señal de conformidad, el cual se encuentra debidamente inscrito en los folios de la empresa. En testimonio de lo expuesto se firma el presente certificado.

Docente: Ing. ANDRÉS ENRIQUE JACHO ALVARADO

Condición: APROBADO

Duración: 120 horas académicas

Ing. Edwin Reynaldo Espinoza Asto PDTE. DE CAP. MECÁNICA-ELÉCTRICA CIP-APURÍMAC

Bornand

Lung

Ing. Denis Caceres Ccaihuari GERENTE GENERAL INSTITUTO NEMA

CONTENIDO DEL CURSO

MÓDULO I: MODELAMIENTO Y FLUJO DE SEP APLICADO CON DIGSILENT POWERFACTORY

- 1.1 Modelamiento de un sistema eléctrico de potencia
- $1.2\ \mathrm{Ingreso}$ de parámetros a barras de voltaje, generadores eléctricos, líneas de transmisión y cargas
- 1.3 Análisis y estudio de flujo de potencia
- 1.4 Casos de estudio, variaciones en el tiempo y escenarios de operación
- 1.5 Gráficas y señales eléctricas de una red eléctrica.
- 1.6 Simulación de eventos de fallas eléctricas.
- 1.7 Obtención de datos y comportamiento de señales eléctricas.
- 1.8 Generar tabla de datos en Excel con los valores de flujo de potencia en estado estable.

MÓDULO II: ESTUDIO Y ANÁLISIS DE CORTOCIRCUITO DE SEP EN DIGSILENT POWERFACTORY

- 2.1 Estudio de Análisis de Cortocircuitos.
- 2.2 Cálculo de cortocircuitos basados en la norma IEC 60909 y método completo.
- 2.3 Simulación de fallas eléctricas tipo monofásica, bifásica, trifásica, bifásica-tierra.
- 2.4 Obtención de las diferentes variables eléctricas ysus señales (barras, transformadores de potencia, generadores eléctricos, líneas de transmisión).

MÓDULO III: PLANIFICACIÓN Y OPERACIÓN DE SEP EN DIGSILENT POWERFACTORY

- 3.1 Estudio de Análisis de Contingencias.
- 3.2 Criterios de operación.
- 3.3 Reporte de análisis de contingencias.
- 3.4 Simulación interfaz one to one.
- 3.5 Simulación contingencias n-1 a todos los elementos

MÓDULO IV: AUTOMATIZACIÓN Y CONTROL DE SEPS EN DIGSILENT POWERFACTORY

- 4.1 Fundamentos de Modelos Dinámicos
- 4.2 Identificación y familiarización con los controles dinámicos, conexiones asociadas a los elementos de la red.
- 4.3 Definición y diferencia entre "Common model and Composite model".
- 4.4 Uso del Data Manager y bibliotecas.
- 4.5 Creación ordenada de carpetas usadas por el usuario.

MÓDULO V: OPERACIÓN Y SIMULACIÓN DE DISPOSITIVOS DE CONTROL DE SEP EN DIGSILENT POWERFACTORY

- 5.1 Crear mediante las librerías Macro y Model un Frame y controlador AVR.
- 5.2 Identificación de los nombres de señales que ingresan a los controladores y Frame.
- 5.3 Actualizar Slots de mallas de control en el Frame.
- 5.4 Implementar Mallas de control a un generador síncrono.
- 5.5 Creación de un sistema de pruebas para las mallas de control.
- 5.6 Implementar Mallas de control a un generador síncrono (AVR Y PSS del libro Kundur), dentro del FRAME y Sintonización de las mallas de AVR y PSS.
- 5.7 Obtención de datos y comportamiento de señales eléctricas.

REGISTRO DE CERTIFICADOS INSTITUTO NEMA CÓDIGO DEL ALUMNO: CV71-EGAT-MASSEPDPF23 RUC: 20612838811

NO	TAS	PROMEDIO
NOTA 01	NOTA 02	I ItOMEDIO
16	16	16

RANGO DE NOTAS			
0 a 10 Reprobado			
10 a 15 Aprobado			
16 a 20 Sobresaliente			